
Los Alamos
NATIONAL LABORATORY

LA-UR-

Approved for public release;

distribution is unlimited.

Title:

Author(s):

Submitted to:

Form 836 (8/00)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.

Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government

retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.

Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the

auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to

publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

02-6987

À la carte: A Simulation Framework
for Extreme-Scale Hardware Architectures

Kathryn Berkbigler, Brian Bush, Kei Davis,
Nicholas Moss, Steve Smith, Thomas P. Caudell,
Kenneth L. Summers, and Cheng Zhou

IASTED International Conference
on Modelling and Simulation
24-26 February 2003
Palm Springs, California

À la carte: A Simulation Framework
for Extreme-Scale Hardware Architectures
Kathryn Berkbigler, Brian Bush, Kei Davis, Nicholas Moss, and Steve Smith

Los Alamos National Laboratory
Los Alamos, NM 87545

email: {kpb, bwb, kei, nickm, sas}@lanl.gov

Thomas P. Caudell, Kenneth L. Summers, and Cheng Zhou
Albuquerque High Performance Computing Center

University of New Mexico
Albuquerque, NM 87131

email: tpc@eece.unm.edu, {summers, czhou}@ahpcc.unm.edu

ABSTRACT
We outline à la carte, an approach for simulating com-
puting architectures applicable to extreme-scale systems
(thousands of processors) and to advanced, novel architec-
tural configurations. Our component-based design allows
for the seamless assembly of architectures from represen-
tations of workload, processor, network interface, switches,
etc., with disparate resolutions, into an integrated simula-
tion model. This accommodates different case studies that
may require different levels of fidelity in various parts of
a system. The current implementation includes low- and
medium-fidelity models of the network and low-fidelity
and direct execution models of the workload. It supports
studies of both simulation performance and scaling, and the
properties of the simulated system themselves.

KEY WORDS
Discrete event simulation, object oriented implementation,
hardware architecture, network.

1 Introduction

The magnitude of the scientific computations targeted by
the US DOE ASCI project requires unprecedented compu-
tational power, and sufficient bandwidth to enable remote,
real-time interaction with the compute servers. To facilitate
these computations ASCI plans to deploy massive com-
puting platforms, possibly consisting of tens of thousands
of processors, capable of achieving 10-100 TeraOPS, with
WAN connectivity from these to distant sites.

Better hardware design and lower development costs
require performance evaluation, analysis, and modeling of
parallel applications and architectures, and in particular
predictive capability. Performance studies are routinely
used to select the best architecture or platform for a given
application, select the best algorithm for solving a particu-
lar problem, and to study scalability with respect to prob-
lem and platform size. Evaluating and analyzing perfor-

mance is challenging primarily because of the large num-
ber of components making up such systems and the com-
plex dynamic interactions between them. For systems of
ASCI-proposed size and complexity simulation is the pre-
dictive tool of choice, though simulation may be fruitfully
augmented by analytical and statistical analysis.

The simulation environment under development is in-
tended to allow (i) exploration of hardware/architecture de-
sign space; (ii) exploration of algorithm/implementation
space both at the application level (e.g. data distribution
and communication) and the system level (e.g. scheduling,
routing, and load balancing); (iii) determining how applica-
tion performance will scale with the number of processors
or other components; (iv) analysis of the tradeoffs between
performance and cost; and, (v) testing and validating ana-
lytical models of computation and communication.

The à la carte project [1] seeks to develop a
simulation-based analysis tool for evaluating massively-
parallel computing platforms including current and future
ASCI-scale systems. Such a tool will provide a means to
analyze and optimize the current systems and applications
as well as influence the design and development of next-
generation high-performance computers. Hence our gen-
eral goal is to design and implement a flexible and modular
simulation framework for design and analysis of extreme-
scale parallel and distributed computing systems, and as
an ongoing part of this process to validate the accuracy of
results characterized by any particular model. An interme-
diate goal is to model, and validate the model of, the ASCI
Q machine [2] with a realistic ASCI workload.

The simulation system should

• be scalable to model systems comprising 10,000 pro-
cessors or more;

• allow components to be represented with arbitrary de-
grees of fidelity, in terms of both structure (e.g. com-
prising distinct subcomponents) and timing;

toolkit of
components

application
tuning

mixed-fidelity
modeling

discrete-
event

simulation

extreme
scale

visualization

architecture
design

validating
models

algorithm
exploration

cost-benefit
analysis

protocol
development

Figure 1. Goals and applications of the à la carte project:
The boxes represent the project goals and the “clouds” rep-
resent applications for the simulation and analysis tool.

• allow arbitrary (meaningful) configuration of compo-
nents;

• be genuinely portable across platforms ranging from
single-processor workstations to clusters of SMPs.

Figure 1 graphically illustrates these goals and the ap-
plications they support. These requirements suggest fac-
toring the simulator into three parts: component descrip-
tions, configuration descriptions, and an underlying, rea-
sonably generic, and reasonably light-weight simulation
system with which all porting issues are associated. An
object-oriented approach facilitates these goals.

It is clear that simulating systems of the size and com-
plexity that we envision will require the use of parallel sim-
ulation; ideally the simulation system would support dis-
tributed and shared memory simultaneously, i.e. fully ex-
ploit clusters of SMPs. Furthermore, the parallel simula-
tion substrate must support composition of simulations and
be very efficient in its implementation. Several parallel dis-
crete event simulation environments exist that may be used
for computer architecture simulation. References [3] and
[4] contain surveys of languages and libraries for parallel
discrete event simulation. We concluded that a conserva-
tive synchronization scheme would have the best chance of
success for this application, and describe our selected sim-
ulation environment in the following section.

2 Simulator Architecture

Our basic approach relies on an iterative development pro-
cess for constructing components of appropriate fidelities
and integrating them into a portable and efficient paral-
lel discrete event simulation that is scalable to thousands
of (simulated) computational nodes. Components may
be processors, switches, network interfaces, or application

DML specification for scenario

DaSSF parallel discrete-event
simulation engine

application
workload

simulation output

networkcomputational
node

visualization

statistical
models

direct
execution

CPU

NIC

switch

protocol

data
collection

summary
statistics

packets
messages

performance

Figure 2. The architecture of the à la carte simulator: Sim-
ulation scenarios are represented using DML and managed
by the DaSSF simulation engine. The application work-
loads, computational nodes, and networks are represented
by software components that are assembled and connected
according to the particular scenario being simulated. The
results of the simulation may be studied visually, statisti-
cally, or in detail.

workloads, for example. Studies of hardware architectures
are made by running our simulation for a particular aggre-
gate system composed of these components. Figure 2 illus-
trates the architecture of our simulator.

We chose a portable, conservative synchronization
engine, the Dartmouth Scalable Simulation Framework
(DaSSF) [5, 6], Dartmouth College’s implementation of
the Scalable Simulation Framework API [7], for the han-
dling of discrete events. DaSSF manages the synchroniza-
tion, scheduling, and delivery of events in the simulation; it
has a lean C++ API and supports both shared-memory and
distributed-memory parallelism. We use the Domain Mod-
eling Language (DML) [8] to specify the architecture and
workload to be simulated. DML allows one to easily con-
struct libraries of reusable component specifications. The
lower two levels of the architecture in Figure 2 comprise
DML and DaSSF.

Our component-based design (represented by the
middle layer in Figure 2) allows for the seamless assem-
bly of architectures from representations of workloads, pro-
cessors, network interfaces, switches, etc., with disparate
resolutions, into an integrated simulation model. Compo-
nents of different fidelities may be mixed and matched to
construct a model with the appropriate level of detail for
a particular study. We are focusing on the development of
a simulation capability that scales to tens of thousands of
processors and that can execute on a wide variety of com-
puting platforms.

We achieve this seamless integration of disparate fi-
delities, and flexibility in constructing models, by exploit-

ing the design of DaSSF and using well-known object-
oriented programming techniques. We use DaSSF enti-
ties to represent the fidelity-independent components of
the simulation and use multiple, alternative DaSSF pro-
cesses connected to these entities to represent the fidelity-
dependent behavior these components might have. The
topology of the machine defined in the DML specifies
how DaSSF channels connect the entities. DaSSF events
move along the channels between entities and are gener-
ated and consumed by the processes. Events related to the
workload, for example, only move along workload-related
channels and events related to the network only move on
network-related channels: thus these two parts of the sim-
ulation are “unaware” of the level of fidelity currently sim-
ulated in the other part. The DML also defines the fi-
delity levels and supplies fidelity-independent and fidelity-
dependent parameters to the entities and processes when
they are constructed.

The representation of application workload (shown on
the left side of the middle layer in Figure 2) forms an es-
pecially important part of the simulation. Our techniques
for representing applications and computational workloads
at a variety of fidelities are described in Section 4. Each
approach addresses tradeoffs between the accuracy of the
model and the computing resources required for the model.

The collection of simulation output (at the upper-
left in Figure 2) is vitally important for understanding
the behavior and performance of the simulated system.
Our approach is to permit the collection of information
on all events (message sends, packetization, switching,
etc.) present in the simulation at the finest level of detail.
Because of the potentially voluminous nature of such data,
we allow for filtering capabilities so that only data of in-
terest will be collected in a given study. Statistical sum-
maries also provide concise views of system performance
and behavior. We are also pursuing visualization of these
simulations (at the upper-right in Figure 2). As described
in Section 6, we focus on both visualizing the execution of
the simulation and on visualizing the performance of the
simulated system.

The current à la carte implementation comprises low-
and medium-fidelity models of a network and low-fidelity
and direct execution (nearly perfect fidelity) models of
workload. These models support studies of simulation per-
formance and scaling, and also the properties of the sim-
ulated systems themselves. Ongoing work in our iterative
development approach aims to improve the fidelity of the
representations and protocols with validation at each stage.
Future work will further emphasize validation, the repre-
sentation of I/O and storage, and wide-area networking.

3 Describing Machine Architectures

DaSSF models may be constructed from DML files or pro-
grammatically. When DML scripts are used, the model
topology is defined in the model DML file. Properties of
model components, the number to be instantiated, and their

connectivity are specified in this file. The machine DML
file describes the hardware platform that the simulation will
run on. The runtime DML file contains runtime informa-
tion such as simulation start and end times and the names
of the other DML files. DaSSF provides a partitioner that
constructs the simulation components from the topology in
the model DML file and assigns these components to the
parallel computing platform.

For models comprising a large number of components
specification in DML quickly becomes cumbersome, run-
ning to millions of lines of text for the models in which we
are interested. This motivated the development of a tool
that generates DML for some space of models.

We have defined a machine representation language
suited to very compact representation of particular topo-
logical structures in which we are interested, e.g. quater-
nary fat trees, with special recognition of the components
of concern, while preserving the ability to write directly in
DML. Details of the design and use of this hardware de-
scription language are beyond the scope of this report; the
complete description is available elsewhere [9]. Instead, a
single example serves to give a sense of the economy of the
notation. The text

l0=n[4096]
l1=s[1024]
l2=s[1024]
l3=s[1024]
l4=s[1024]
l5=s[1024]
l6=s[1024]

connect l0,l1
connect l1,l2 [1, 0, 2, 3, 4, 5]
connect l2,l3 [2, 0, 1, 3, 4, 5]
connect l3,l4 [3, 4, 0, 1, 2, 5]
connect l4,l5 [1, 0, 2, 3, 4, 5]
connect l5,l6 [5, 1, 2, 3, 4, 0]

model.dml{}

expands to approximately 6MB DML ASCII text and fully
specifies a model of a 4096-node machine arranged as a
six-layer quaternary fat tree, a mathematical description of
which may be found elsewhere [10].

4 Representing Workloads

The representation of the application workload is an impor-
tant component in the à la carte framework. The frame-
work is designed to allow multiple representations with
varying degrees of fidelity. In this section we describe sev-
eral workload representations that have been implemented.

The workload on each computational node is repre-
sented in the simulation software as a TSMPNode instance
(a DaSSF entity) that encapsulates the attributes and be-
havior common to all types of workloads. This instance
is connected via DaSSF channels to a network interface
card entity TNIC (discussed further in the next section).
When the workload sends or receives a message, a TMes-
sage instance (a DaSSF event) moves between the work-

load and NIC entities on the channel connecting them: the
DaSSF discrete-event infrastructure manages the delivery
of the event to the appropriate DaSSF process at the cor-
rect simulated time. The workloads discussed in the rest
of this section differ in the implementation of the DaSSF
processes connected to the TSMPNode instance. We use
a factory object, TWorkloadFactory, constructed from the
DML specification for the simulation run, to manage the
instantiation and attachment of the correct workload pro-
cesses to the workload entity.

In the simplest workload model, the user specifies ex-
actly what messages will be sent from each SMP node in
the network topology, the time the message is sent, the des-
tination of the message, the message size in bytes, and op-
tionally, the data content of the message. This workload
model is useful for testing specific features of the network
models because the content of messages is precisely con-
trolled. It can also be used in trace-driven studies of net-
work behavior.

The statistical workload model is characterized by
three random variables: an exponentially distributed de-
lay between messages, an exponentially distributed mes-
sage size, and the message destination, where all possible
destinations are equally likely. The average values for mes-
sage delay and size are specified in the DML model input.
The destinations to which each source node can send can
be specified individually for each node.

The ping workload model was developed to facilitate
comparison of the simulation with ping tests conducted on
the network hardware. Parameters for this workload are the
exact size of the message, the exact delay between mes-
sages, the number of messages to send, and the message
destination for each message source.

The direct-execution workload component provides a
means to generate network messages according to the de-
mands of an actual running application. In direct execu-
tion simulation the application is executed on the same ma-
chine used to perform the simulation. The application is
typically modified to call the simulator only for those op-
erations that differ between the host machine and the simu-
lated machine. Using the host machine to directly execute
some instructions rather than simulating all instructions can
result in considerably faster execution with minimal loss of
accuracy when the host and target have similar architec-
tures. Our experiments with direct execution thus far have
focused on simulation of communications on the intercon-
nection network and direct execution of the computational
aspects of an application.

From time series of fine-grained simulations we are
also using learning algorithms to construct reduced mod-
els of the full system dynamics. This involves regression
techniques like neural networks or dimension reduction
methods such as the Karhunen-Loeve expansion. When
these techniques are more mature they will be implemented
within our framework as a new type of workload.

5 Representing Networks

For our first studies rather than modeling the processors and
memory hierarchy of an SMP node in detail we chose to
emphasize modeling the interconnection network and rout-
ing protocol. The ASCI Q machine utilizes a Quadrics in-
terconnection network [2], in which the switches are con-
nected in a quaternary fat-tree topology. The current net-
work models assume this arrangement but our framework
is general enough to include other topologies.

The network model contains two types of DaSSF en-
tities, representing the network interface card (TNIC in-
stances) and the network switch (TSwitch instances). The
NIC has an incoming channel for receiving messages from
its SMP node and an outgoing channel for sending mes-
sages to its SMP node. Additionally, the NIC has an out-
going channel and an incoming channel that connect it to
its network switch. Each network switch has 8 incoming
channels and 8 outgoing channels. At the level nearest the
NICs, 4 of the channels communicate with 4 NICs and 4
communicate with the next level in the quaternary fat-tree.
Higher in the fat-tree, communication involves only other
switches.

The DML model input is used to create TNIC and
TSwitch instances connected by the DaSSF channels de-
scribed above with the requested network topology. A
TNetworkFactory object (also created according to the
DML) manages the creation of several DaSSF processes
connected to the NICs and switches—which processes are
created depends on whether a low- or medium-fidelity net-
work simulation was requested.

5.1 Low-Fidelity Quadrics Network

The à la carte low-fidelity network implementation rep-
resents the network as a circuit-switched fat-tree network.
The source–target patterns for messages can be configured.
The switches with four up ports and four down ports are
modeled at the packet level with a simple protocol that al-
locates a circuit through the network for each message. Us-
ing a single circuit for an entire message may be adequate
for some types of simulation studies where the details of
network traffic congestion are not important. We have run
the low-fidelity simulation with a simple statistical work-
load on a variety of sample models from 1 to 4096 compu-
tational nodes (up to 6144 switches in a fat-tree network).

5.2 Medium-Fidelity Quadrics Network

The à la carte medium-fidelity network model builds on the
low-fidelity model by enhancing its accuracy and realism.
This model is much closer to representing actual hardware
and mimicking the behavior of network protocols in use
on real systems. We expect the resolution of this represen-
tation to be sufficient for even the most detailed network
studies.

The primary requirement is the ability to accurately
model the movement of packets in Quadrics networks con-
sisting of Elan network interface cards [11, 12] connected
to Elite crossbar switches [13, 12] in a fat-tree network at
nearly flit (16-bit unit) resolution. We need to accurately
track the movement of the message across the PCI bus be-
tween main memory and the network interface card (NIC),
account for its packetization, and clock the transfer of data
across the network. Because contention may exist in the
network, different parts of the packet may move at differ-
ent speeds through the switches (i.e., buffering and delays
may occur anywhere in the network).

Upgrading the low-fidelity network model to the re-
quired higher fidelity was straightforward—a direct ben-
efit of careful design. The basic TSMPNode, TNIC, and
TSwitch entities remain essentially unchanged. We use ob-
ject factory methods to generate the appropriate TRoutin-
gAlgorithm or TFlowControl instances for the fidelity speci-
fied in the DML input file. The medium fidelity TCircuitAl-
gorithm and TCircuitControl classes are similar to their low
fidelity counterparts except for their internal logic, which
is considerably more complex, and the type of packets they
handle. The design relies on the tracking of the head and
tail of the packet throughout its history, along with various
flit-level tokens specified in the Elan protocol.

In addition to tracking the movement of the head
and the tail of packets through the NICs and switches,
we account for the existence of two virtual channels shar-
ing bandwidth at switches (but without age-based priori-
ties, etc.). The Elan AckNow request may occur anywhere
within the packet (usually after 64 bytes or at the end of
the packet). The EOP GOOD tokens free the virtual chan-
nels used by the packet. The START/STOP tokens are ac-
counted for by buffering of packets at the incoming links
to switches if no outgoing virtual channel is available. We
model the PCI bus as half-duplex, and account for writes to
the NIC’s command port. Finally, we allow wildcards for
packet routing on upward links. We do not yet model error
conditions or the hardware support for broadcast communi-
cations. Adding further resolution may not be cost effective
because of the uncertainties involved in the performance of
the operating system on the node, memory issues, and PCI
bus behavior.

The basic strategy for dealing with packets is as fol-
lows. When the head of the packet reaches an entity like
a NIC, switch, or node, it leaves a reservation at the en-
tity. The head of the packet is forwarded along the route as
soon as possible—it might be delayed slightly for switch
logic or may be delayed significantly if it is queued for
later transmission. As soon as the head leaves the entity,
the reservation keeps track of how many bytes remain to
be transmitted. The tail of the packet cannot be forwarded
until it has been received from the previous stage and the
number of bytes remaining at the current stage is zero. The
“okay” event proceeds along the reverse path at full speed,
and the “good” event cleans up the reservations. There is
some fairly complex timekeeping logic for multiplexing the

transmission of packets in switches and the receipt of them
in NICs.

The studies that have been conducted with this net-
work model are described elsewhere [14]. The models have
been calibrated to the behavior of an existing cluster com-
puter of 64 nodes with 256 Alpha/Linux processors con-
nected by an ELAN3 Quadrics network. The calibrated
simulation accurately represents real MPI-based pings on
the network to within about 750 ns; lower-level pings are
modeled accurately to about 100 ns. The network and
workload modules have been validated against the real be-
havior of a representative ASCI application, SWEEP3D.
We can predict the execution time of this application to
within about 10%, even using the relatively coarse appli-
cation timers available for our experiments. Our study of
the scaling properties of our simulation indicates that it can
handle much larger application instances than SWEEP3D.

6 Visualization

Our visualization efforts focus both on viewing the execu-
tion of the simulation and on displaying the performance
of the simulated system. Visualization also aids in debug-
ging the simulation itself, in developing and evaluating the
efficiency of load balancing of the simulation entities, and
in understanding synchronization between simulation time-
lines. Visualizing the simulated system allows end users to
understand how varying workload or network architecture
affects the overall performance of an advanced or novel ar-
chitecture. Communication patterns, levels of network us-
ages, and the presence of bottlenecks are all made manifest.
Our visualization approaches include direct representations
of the architecture as well as innovative abstractions of the
architecture and dynamics of the system.

Flatland is an immersive visualization development
framework created at the University of New Mexico as part
of the Homunculus project [15]. It is used to facilitate rapid
prototyping and research in scientific and information visu-
alization, immersive environments and interfaces, and hu-
man factors engineering. Utilizing the Flatland framework
has leveraged the development of a visualization capability
for à la carte.

The visualization tool consists of a set of physical rep-
resentations suitable for representing the topology of the
network which in turn is used to register the events gener-
ated by the simulator or possibly a real system with proper
instrumentation. Several representation have been devel-
oped, starting with a suite of direct representations, and
followed by more abstract views. The Layered Block view
represents the hierarchical fat-tree topology in a variant of
a connectivity or adjacency matrix. The self-similar Frac-
tal and H Tree representations take greater advantage of the
topology of the network and use 2 dimensional space effi-
ciently. Figure 3 is an example of the H Tree representation
with packet flow between switches represented as arcs.

The à la carte visualizer currently provides the abil-
ity to read the data from a simulation run and run it for-

Figure 3. H Tree with packet flow represented as arcs; the
white squares represent network switches.

ward and backward in time, controlling the speed of the
animation of the events. It also allows the user to toggle on
and off the various modes of the representations, such as
whether packet flow is displayed as straight lines, arcs, or
not displayed.

7 Conclusion

The à la carte simulation framework enables the seam-
less composition of hardware, protocols, and workloads of
varying fidelities into a single simulation. The availability
of multiple fidelities for each component allows the choice
of model to be governed by the requirements of a particular
study, thus optimizing the use of simulation time available
for the study. Using DaSSF as the underlying parallel dis-
crete event simulation substrate and Flatland as the basis
for visualization has enabled the à la carte team to focus
on the object oriented development of components in the
computer architecture domain. We have implemented mul-
tiple models for workload and network components and
will continue to add to the repertoire. We have also vali-
dated the models and conducted studies that illustrate their
use; this work is continuing with larger validation, scaling,
and case studies.

8 Acknowledgements

This work was carried out under the auspices of the Depart-
ment of Energy at Los Alamos National Laboratory under
ASCI DisCom2. We would like to thank LANL’s DisCom
project leader, Stephen Turpin, and the à la carte project
leader, Adolfy Hoisie, for their support.

Thanks to members of the extended LANL à la carte
team for technical input, including Mike Boorman, Fab-
rizio Petrini, and Harvey Wasserman; and to David Nicol
and Jason Liu (Dartmouth College).

References

[1] http://www.c3.lanl.gov/˜parsim.

[2] R. Kaufman. The Q Supercomputer and Com-
paq. http://www.compaq.com/hpc/news/
news_hpc_60171.html, November 2000.
High Performance Technical Computing News, Issue
18.

[3] R. L. Bagrodia. Parallel Languages for Discrete-
Event Simulation Models. IEEE Computational Sci-
ence & Engineering, 5(2):27–38, Apr-June 1998.

[4] Y.-H. Low, C.-C. Lim, W. Cai, S.-Y. Huang, W.-J.
Hsu, S. Jain, and S. Turner. Survey of Languages and
Runtime Libraries for Parallel Discrete-Event Simu-
lation. Simulation, 73(3):170–186, March 1999.

[5] Jason Liu and David M. Nicol. Dartmouth Scalable
Simulation Framework User’s Manual. Dartmouth
College Dept. of Computer Science, Feb 6 2002.

[6] David M. Nicol and Jason Liu. Composite Syn-
chronization in Parallel Discrete-Event Simulation.
IEEE Transactions on Parallel and Distributed Sys-
tems, 13(5):433–446, May 2002.

[7] James H. Cowie, David M. Nicol, and Andy T. Ogiel-
ski. Modeling the Global Internet. Computing in Sci-
ence & Engineering, 1(1):30–38, 1999.

[8] http://www.ssfnet.org/SSFdocs/
dmlReference.html.

[9] Nick Moss. A Compact Machine Representation
Language for Simulation of Large-Scale Parallel Ar-
chitectures. Technical Report LA-UR 02-6058, Los
Alamos National Laboratory, 2002.

[10] Brian W. Bush. Idealized Q Layout. Los Alamos
National Laboratory, 2002.

[11] Quadrics Supercomputers World Ltd., Bristol, UK.
Elan Reference Manual, January 1999.

[12] Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Sal-
vador Coll, and Eitan Frachtenberg. The Quadrics
Network: High Performance Clustering Technology.
IEEE Micro, 22(1):46–57, January-February 2002.

[13] Quadrics Supercomputers World Ltd., Bristol, UK.
Elite Reference Manual, November 1999.

[14] Kathryn Berkbigler, Graham Booker, Brian Bush, Kei
Davis, and Nicholas Moss. Simulating the Quadrics
Interconnection Network. Submitted to High Perfor-
mance Computing Symposium 2003, March 2003.

[15] http://www.ahpcc.unm.edu/
homunculus/indexold.html.

	ABSTRACT
	Introduction
	Simulator Architecture
	Describing Machine Architectures
	Representing Workloads
	Representing Networks
	Low-Fidelity Quadrics Network
	Medium-Fidelity Quadrics Network

	Visualization
	Conclusion
	Acknowledgements
	References

